Escenarios para la transición energética a una economía carbono neutral en América Latina y el Caribe: algunos hechos estilizados
PDF
XML

Palabras clave

América Latina y Caribe
CO2e
IPAT
STIRPAT
curva de Kuznets
convergencia

Cómo citar

Galindo, L. M., Reyes Martínez, P. G., & González, F. (2022). Escenarios para la transición energética a una economía carbono neutral en América Latina y el Caribe: algunos hechos estilizados. Sobre México Temas De Economía, 1(6), 5-39. https://doi.org/10.48102/rsm.v1i6.112

Resumen

El principal objetivo del artículo es analizar algunos hechos estilizados de la trayectoria de las emisiones de gases de efecto invernadero, provenientes del consumo de energía (CO2ee), y construir escenarios prospectivos para América Latina y el Caribe que permitan ilustrar la urgencia, magnitud, posibilidades y limitaciones del esfuerzo de mitigación requerido para alcanzar la meta de una economía carbono neutral entre 2050-2070. La construcción de estos escenarios se basa en los modelos IPAT y STIRPAT, así como en las estimaciones de las hipótesis de la EKC y de la convergencia de emisiones entre países. Los principales resultados indican que las emisiones de CO2ee están estrechamente asociadas a la evolución del PIB, PIB per cápita, población y consumo de energía, y que el actual proceso de desacoplamiento en la trayectoria de las emisiones de CO2ee, provenientes de sus principales variables determinantes, es insuficiente para cumplir la meta de una economía carbono neutral a 2050.

https://doi.org/10.48102/rsm.v1i6.112
PDF
XML

Citas

Akimoto, K., Sano, F., Homma, T., Tokushige, K., Nagashima, M. y Tomoda, T. (febrero de 2014). Assessment of the emission reduction target of halving CO2 emissions by 2050: Macrofactors analysis and model analysis under newly developed socio-economic scenarios. Energy Strategy Reviews, 2(3-4), 246-256.

Ajmi, A. N., S. Hammoudeh, D. K. Nguyen y Sato, J. R. (2015). On the relationship between CO2 emissions, energy consumption and income: the importance of time variation. Energy Economics, 49, 629-638.

Alcántara, V. (2009). Evolución de las emisiones de gases de efecto invernadero en España. Papeles de Economía Española, 121, 88-99.

Alcántara, V. y Padilla, E. (2010). Determinantes del crecimiento de las emisiones de gases de efecto invernadero en España (1990-2007). Revista Galega de Economía, 19(1).

Bargaoui, S. A., Liouane, N. y Nouri, F. Z. (2014). Environmental impact determinants: An empirical analysis based on the STIRPAT model. Procedia-Social and Behavioral Sciences, 109, 449-458.

Barro, R. J. y Sala i Martin, X. (2009). Crecimiento económico. Barcelona: Editorial Reverté.

Britton, E., Fisher, P. y Whitley, J. (febrero de 1998). The Inflation Report Projections: Understanding the Fan Chart. Bank of England Quarterly Bulletin, 30-36.

Burke, P., Shahiduzzaman, M. y Stern, D. (2015). Carbon dioxide emissions in the short run: the rate and sources of economic growth matter. Global Environmental Change, 31, 109-121.

Carbon Tracker Initiative (2021). https://carbontracker.org/?lang=es

Cohen, G., Jalles, J. T., Loungani, P. y Marti, R. (2018). The long run decoupling emissions and output: Evidence from the largest emitters. Energy Policy, 118, 58-68.

Cole, M. A. y Neumayer, E. (2004). Examining the impact of demographic factors on air pollution. Population and Environment, 26(1), 5-21.

Dell, M., Jones, B. F. y Olken, B. A. (2014). What Do We Learn from the Weather? The New Climate-Economy Literature. Journal of Economic Literature, 52 (3), 740-98.

Deryugina, T. y Hsiang, S. M. (2014). Does the environment still matter? Daily temperature and income in the United States (No. w20750). National Bureau of Economic Research.

Dickey, D. A. y Fuller, W. A. (1981). Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica, 49 (4), 1057-1072.

Dijkgraaf, E. y Vollebergh, H. R. J. (2005). A Test for Parameter Homogeneity in CO2 Panel EKC Estimations. Environ Resource Econ, 32, 229-239. https://doi.org/10.1007/s10640-005-2776-0

Duro, J. A., & Padilla, E. (2011). Inequality across countries in energy intensities: An analysis of the role of energy transformation and final energy consumption. Energy Economics, 33(3), 474-479.

Ekins, P. (2000). Economic growth and environmental sustainability. Routledge.

Engle, R. y Granger, C. (1987). Co-integration and error correction: representation, estimation, and testing. Econometrica, 55(2), 251-276.

Fan, Y., Liu, L-C. Wu, G. y Wei, Y-M. (2006). Analyzing impact factors of CO2 emissions using STIRPAT model. Environmental Impact Assessments Review, 26(4), 377-395.

Fay, M., Hallegatte, S., Vogt-Schilb, A., Rozenberg, J., Narloch, U. y Kerr, T. (2015). Decarbonizing Development: Three Steps to a Zero-Carbon Future. Climate Change and Development. Washington, DC: World Bank. https://openknowledge.worldbank.org/handle/10986/21842 License: CC BY 3.0 IGO

Galindo, L. M., Caballero, K. y Francisco, C. A. (2021). La demanda de electricidad residencial y el cambio climático em Argentina, Brasil, Chile y Colombia. Revista Chilena de Economía y Sociedad, 15(2). https://rches.utem.cl/articulos/la-demanda-de-electricidad-residencial-y-el-cambio-climatico-en-argentina-brasil-chile-y-colombia/

Gómez, M. y Rodríguez, J. C. (2020). Análisis de la curva ambiental de Kuznetz en los países del TLCAN, 1971-2014. EconoQuantum, 17(2). https://doi.org/10.18381/eq.v17i2.7151

Gutman, V. y Gutman, A. (2017). Emisiones energéticas de identidad de Kaya: Nota metodológica. Buenos Aires: Fundación Torcuato Di Tella.

Hassan, M. (2016). Urbanization and CO2 emission in Bangladexch: The application of STIRPAT model. A paper presented at the Insearch, 2016:3rd.

Heil, M. T. y Selden, T. M. (2001). Carbon emissions and economic development: future trajectories based on historical experience. Environment and Development Economics, 6, 63-83.

IEA (International Energy Agency) (2021). World Energy Outlook 2021. https://iea.blob.core.windows.net/assets/599abf72-a686-4786-9cc2-b05e05b8dc2b/WEO2021_ES_Spanish.pdf

Im, K., Pesaran, M. H. y Shin Y. (1995) (1a. revisado en diciembre 1997). Testing for Unit Roots in Heterogeneous Panels, 1a. versión de 1995, 9526 Working Paper. Department of Applied Economics, University of Cambridge.

IPCC (Grupo Intergubernamental de Expertos sobre Cambio Climático) (2018). Summary for Policymakers. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming. [Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., ... (eds.)]. Ginebra: World Meteorological Organization, 32 pp.

Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 2-3, 231-254.

Johansen, S. (1995). Likelihood-based Inference in Cointegrated Vector Autoregressive Models. Oxford: Oxford University Press.

Kao, C. (1999). Spurious Regression and Residual-Based Tests for Cointegration in Panel Data. Journal of Econometrics, 90(1), 1-44.

Kao, C. y Chiang, M. (2000). On the estimation and inference of a cointegrated regression in panel data. En B. Baltagi, (ed.), Nonstationary Panels, Panel Cointegration, and Dynamic Panels, Advances in Econometrics (pp. 161-178), vol. 15. Amsterdam: JAI Press.

Kristrom, B. y Lundgren, T. (2005). Swedish CO2-emissions 1900-2010: an exploratory note. Energy Policy, 33(9), 1223-1230.

Kwiatkowsky, D., Phillips, P. B. C., Schmidt, P. y Shin, Y. (1992). Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root? Journal of Econometrics, 54(1-3), 159-178.

Labandeira, X. y Carmelo, J. L. (2007). Economía ambiental. España: Pearson Prentice Hall.

Levin, A y Lin, C. F. (mayo de 1992). Unit Root Tests in Panel Data: Asymptotic and Finite–Sample Properties. UC San Diego Working Paper , 92-93.

Liddle, B. (2011). Consumption- driven environmental impact and age structure change in OECD countries: A cointegration- STIRPAT analysis. Demographic Research, 24, 749-770.

Liddle, B. y Lung, S. (2010). Age-structure, urbanization, and climate change in developed countries: revisiting STIRPAT for disaggregated population and consumption-related environmental impacts. Population and Environment, 31(5), 317-343.

Lin, S., Shao, D. y Marinova, D. (2009). Analysis of the environmental impact of China based on STIRPAT model. Environmental Impact Assessment Review, 29(6), 341-347.

Lohwasser, J., Schaffer, A. y Brieeden, A. (diciembre de 2020). The role of demographic and economic division on the environment in traditional and standardized STIRPAT model. Ecologial Economics, 178.

Maddala, G. y Wu, S. (1999). A comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and Statistics, 61(S1), 631-652.

Morita, T., Nakićenović, N. y Robinson, J. (2000). Overview of mitigation scenarios for global climate stabilization based on new IPCC emission scenarios (SRES). Environ Econ Policy Stud, 3, 65-88. https://doi.org/10.1007/BF03354031

McCoskey, S. y Kao, C. (1999). A Monte Carlo comparison of tests for cointegration in panel data. Available at SSRN 1807953.

Martínez-Zarzoso, I., Bengochea-Morancho, A. y Morales-Lage, R. (2007). The impact of population on CO2 emissions: evidence from European countries. Environmental and Resource Economics, 38(4), 497-512.

Nakicenovic, N., Alcamo, J., Davis, G., ... (2000). IPCC: Special Report on Emissions Scenarios.

Narayan, P. y Narayan, S. (2010). Carbon dioxide emissions and economic growth: panel data evidence form developing countries. Energy Policy, 38(1), 661-666.

NGFS (Network for Greening the Financial System) (2021). NGFS climate scenarios for central banks and supervisors. Network for Greening the Financial System.

Nguyen, P. (2005). Distribution Dynamics of CO2 emissions. Environmental and Resource Economics, 32, 495-508. doi 10.1007/s10640-005-7687-6

Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica: Journal of the econometric society, 1417-1426.

Pao, H. T. y Tsai, C. M. (2011). Modeling and forecasting the CO2 emissions, energy consumption and economic growth in Brazil. Energy, 36(5), 2450-2458. doi:10.1016//J.energy201601.032

Pedroni, P. (1999). Purchasing Power Parity Tests in Cointegrated Panels. Working Paper, Department of Economics, Indiana University.

Pedroni, P. (2004). Panel cointegration: asymptotic and finite sample properties of fooled time series tests with an application to the PPP hypothesis. Econometric Theory, 20(3), 597-625.

Phillips, P. C. y Hansen, B. E. (1990). Statistical inference in instrumental variables regression with I (1) processes. The Review of Economic Studies, 57(1), 99-125.

Phillips, P. C. y Moon, H. R. (1999). Linear regression limit theory for nonstationary panel data. Econometrica, 67(5), 1057-1111.

Phillips, P. C. y Perron, P. (1988). Testing for Unit Root in Time Series Regression. Biemetrica, 75 (2), 335-346.

Quah, D.T. (1997). Empirices for growth and distribution stratificacion, polarization and convergence clubs. Journal of Ecnomic Growth, 2, 27-59.

Ritchie, H. y Roser, M. (2018). Urbanization. Our world in data. https://ourworldindata.org/urbanization

Salim, R., Rafiq, S. y Shafiei, S. (2017). Urbanization, energy consumption and pollutant emissions in Asian developing economies. An empirical analysis. Technical Report, ADBI, Working Paper Series.

Salim, R., Yao, Y. y Chen, G. S. (2017). Does human capital matter for energy consumption in China? Energy Economics, 67, 49-59.

Samaniego, J. L. y Galindo, L. M. (2009). Escenarios de emisiones de gases de efecto invernadero asociados a combustibles fósiles en América Latina. Economía Informa, 360, 40-66.

Sandoval, E. (2013). Proyección sobre energía eléctrica en México mediante la identidad de Kaya. Economía Informa, 380, 41-53.

Shi, A. (2003). The impact of population pressure on global carbon dioxide emissions, 1975–1996: evidence from pooled cross-country data. Ecological economics, 44(1), 29-42.

Singh, M. y Mukheriee, D. (2018). Drivers of greenhouse gas emissions in the United States: revisiting STIRPAT model. Environmental development and Sustainability, 21, 3015–3031.

Strazicich, M. C. y List, J. A. (2003). Are CO2 emissions levels converging among industrial countries. Environmental and Resource Economics, 24, 263-271.

Tursun, H., Li, Z., Liu, R., Li, Y. y Wang, X. (2014). Contribution weight of engineering technology on pollutant emission reduction based on IPAT and LMDI methods. Clean Technologies and Environmental Policy, 17, 225-235. 10.1007/s10098-014-0780-1.

Van Ruijven, B. J., Daenzer, K., Fisher-Vanden, K., Kober, T., Paltsev, S., Beach, R. H., Calderon, S.L., Calvin, K., Labriet, M., Kitous, A. et al. (2016). Baseline projections for Latin America: base year assumptions, key drivers and greenhouse emissions. Energy Economics, 56, pp. 499-512.

Vide, J. M. (2007). Aspectos económicos del cambio climático en España. Barcelona: Caixa Cataluya.

World Bank (1992). World Development Report, 1992. Oxford/Nueva York: Oxford University Press.

World Bank; Ecofys, Vivid Economics (2017). State and Trends of Carbon Pricing. Washington, DC: World Bank.

WRI (World Resources Institute) (2021). CAIT Climate Data Explorer. http://cait.wri.org/

Yan, W, Yi, W. y Yu, B. (2016). The change of the relationship between CO2 emissions and the driving forces ―Quantile regression based on STIRPAT model―. Environmental Science.

York, R., Rosa E. A. y Dietz, T. (2003). STIRPAT, IPAT and impact; analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46(3), 351-365.